3

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Micrometeoroid Impact Rate Analysis for an Artemis-Era Lunar Base

Daniel A. Yahalomi, ^{1,2,*} Matthew T. Scoggins, ¹ Nasiah Anderson, ^{3,†} Mark Driker, ^{3,†} Kokoro Onuma, ^{3,†} Kwamena T. Awotwi, ⁴ Justin M. Donovan, ⁴ Priyan Sathianathan, ⁴ and Michael J. Massimino⁵

¹ Department of Astronomy, Columbia University, 550 W 120th St., New York NY 10027, USA
 ² Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave, New York, NY 10010, USA
 ³ Columbia Secondary High School, 425 W 123rd Street, New York NY 10027, USA
 ⁴ Columbia University, 550 W 120th St., New York NY 10027, USA
 ⁵ Department of Mechanical Engineering, Columbia University, 500 W. 120th St., New York NY 10027, USA

ABSTRACT

The National Aeronautics and Space Administration's (NASA) Artemis Mission aims to return astronauts to the Moon and establish a base at the South Pole. Ensuring the safety of long-duration habitation requires understanding the threat of meteoroid and micrometeoroid impacts. While meteoroid fluxes are well characterized by ground- and space-based observations, micrometeoroids are too small for current monitoring and will impact the lunar surface directly. Using NASA's Meteoroid Engineering Model 3.0 (MEM 3), we estimate micrometeoroid impact rates on a base comparable in size to the International Space Station, with assumed dimensions of $100 \,\mathrm{m} \times 100 \,\mathrm{m} \times 10 \,\mathrm{m}$. We find that the lunar poles experience ~ 1.6 times fewer impacts than the equator. We show that a lunar base would be subjected to $\sim 15,000-23,000$ impacts per year, depending on its location on the lunar surface - with minima at the lunar poles. To assess the mitigating effect of protection systems, we develop a functional relationship describing the number of impacts that penetrate the shielding as a function of the maximum meteoroid mass the shield can arrest. We estimate that the use of state-of-the-art Whipple shields will protect against ~99.9997\% of impacting micrometeoroids. By running the MEM 3 simulations with a minimum mass equal to the critical mass of modern Whipple shields, we determine that a shielded lunar base would be subjected to $\sim 0.024-0.037$ impacts per year, depending on its location on the lunar surface – again with minima at the poles. These results indicate that the [1] lunar poles are optimal locations for sustained habitation and [2] that current shielding technology can reduce micrometeoroid threats by nearly five orders of magnitude making long-duration lunar habitation very feasible.

1. BACKGROUND AND MOTIVATION

The Artemis program, led by National Aeronautics and Space Administration's (NASA), marks a renewed commitment to sustained human presence on the Moon. Building upon the legacy of Apollo, Artemis aims not only to return astronauts to the lunar surface but also to establish a long-term base of operations at the lunar south pole. This initiative, in collaboration with international and commercial partners, envisions a new era of lunar exploration that will serve as a stepping stone for missions to Mars and beyond. As planning for sur-

Corresponding author: Daniel A. Yahalomi daniel.yahalomi@columbia.edu

⁴⁰ face infrastructure advances, assessing the environmen-⁴¹ tal risks faced by long-duration lunar assets becomes ⁴² critical.

Key to this vision is the *Artemis Base Camp* architecture. The base camp concept frames how future landers, habitats, logistics, and operations might evolve on
the lunar surface. To design for longevity, one must
account for the myriad environmental hazards that a
long-duration outpost will face — among them radiation, extreme thermal cycling, regolith dynamics, seismic shaking, dust, and, of particular importance to this
work, meteoroid impacts.

Artemis III, currently planned for \sim 2027, will be an system such polar region to the lunar south pole, providing reconnaissance for future sustained surface operations. NASA has identified the south polar region—specifically the *Artemis Exploration Zone* (AEZ)—as

^{*} Flatiron Research Fellow

[†] Columbia STAR Program Student

the prime target due to its scientific value and proximity to Permanently Shadowed Regions (PSRs) that
may contain accessible water ice (Peña-Asensio et al.
2024). Building on this framework, Peña-Asensio et al.
(2024) used a multi-criteria decision analysis to identify
the Nobile Rim region as a leading candidate for the
Artemis III landing site. The selection criteria encompass features such as stable, flat terrain to ensure safety
during landing and operations; unobstructed communication links with Earth to facilitate effective data transfer and mission management; sufficient solar illumination to support power generation; and environmental
conditions that keep equipment within acceptable temperature ranges—all aimed at achieving the highest possible scientific yield (Peña-Asensio et al. 2024).

While landing site selection focuses on ensuring the safety and scientific value of surface operations, long-term mission success will also depend on protecting habitats, vehicles, and equipment from the harsh lunar environment. One critical consideration in this context shielding against micrometeoroid and orbital debris (MMOD) impacts, which pose a persistent hazard to both crewed and uncrewed systems.

1.1. Current MMOD Shielding

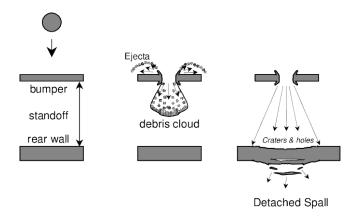


Figure 1. Whipple shield schematic from Ryan et al. (2015).

In establishing a Lunar Base as a part of the Artemis Mission, there will inevitably be some meteoroid shielding protocol. The specific shielding plans for the Artemis mission are not yet known; however, reasonable inferences can be made based on NASA's current Microme-teoroid and Orbital Debris (MMOD) shielding designs. The classic MMOD shield (Whipple shield) is composed of a thin sacrificial bumper and a rear wall, with some interior spacing Christiansen et al. (2009) typically constructed of aluminum (Christiansen et al. 2009). Such a configuration is shown in Figure 1. Assuming that NASA will use a Whipple shield made of aluminum

93 throughout the Artemis mission, we can estimate the 94 minimum size of a projectile that would be capable of 95 breaking through the shield. We can use the equation 96 for critical diameter for a Whipple shield, in high veloc-97 ity space, as presented in Ryan & Christiansen (2010), 98 and shown below:

$$d_c = 3.918 F_2^* \frac{t_w^{2/3} S^{1/3} (\sigma/70)^{1/3}}{\rho_p^{1/3} \rho_b^{1/9} (V \cos \theta)^{2/3}}.$$
 (1)

Assuming the projectile is a solid sphere of density ρ_p , the mass is:

$$m_c = \frac{\pi}{6} \rho_p d_c^3 \tag{2}$$

Substituting Equation (1) into the expression for mass, we can determine the critical mass of micrometeoristeoroid impactor:

102

130

$$m_c = \frac{\pi}{6} (3.918 F_2^*)^3 \frac{t_w^2 S(\sigma/70)}{\rho_b^{1/3} (V \cos \theta)^2}.$$
 (3)

Here, F_2^* is the projectile fragmentation efficiency, t_w 108 is the thickness in cm of the rear wall, S is the spacing 109 in cm of the rear wall, σ is the rear wall yield stress 110 in ksi, ρ_p is the density of the projectile, ρ_b is the den-111 sity of the front bumper, V is the velocity of the pro-112 jectile, and θ is the angle of impact. Using this equa-113 tion and representative parameter values (see e.g., Ryan ¹¹⁴ & Christiansen (2010)), a back-of-the-envelope calcula-115 tion for the fastest micrometeoroids – with velocities 116 up to 72 km/s – yields a critical shield diameter of ap-117 proximately 0.12 cm. This value should be regarded as an order-of-magnitude estimate, indicating that objects 119 larger than roughly 0.12 cm in diameter may exceed the 120 protective capability of state-of-the-art MMOD shields. 121 This underscores the importance of precise and accurate 122 modeling of the micrometeoroid environment.

We note that NASA may ultimately employ novel shielding strategies – such as the use of lunar regolith in shielding, which will be abundant on the surface – no specific plans or experimental data on their performance have yet been disclosed. Accordingly, in what follows we proceed under the assumption of a Whipple-type shielding configuration as a representative baseline.

1.2. Current Lunar Impact Monitoring

Current lunar impact monitoring techniques employ several complementary observational strategies, each with distinct strengths and limitations. These include topographic mapping through laser altimetry, detection of impact-induced optical flashes on the lunar surface, and temporal imaging of newly formed craters. Collectively, these methods have greatly advanced our under-

190

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

standing of the lunar impact environment, particularly within the meteoroid size regime where optical and morphological signatures are more readily detectable. However, despite their demonstrated success in characterizing larger impact events, these techniques typically lack the sensitivity required to systematically monitor or constrain impacts in the micrometeoroid regime. As noted by Speyerer et al. (2016b), "although studies of existing craters and returned samples offer insight into the process of crater formation and the past cratering rate, questions still remain about the present rate of crater production."

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

- Temporal Imaging: The Lunar Reconnaissance Orbiter Camera (LROC), launched in 2009, captures high-resolution images of the Moon's surface, enabling the detection of new impact craters through temporal image comparisons. Speyerer et al. (2016a) identified over 200 new craters, with a resolution limit of approximately 10 me-Laboratory experiments and dimensional analyses show that crater size depends on impactor size, velocity, gravity, and material properties in a well-characterized scaling framework (Melosh 1989; Holsapple 1993). For meteor impactors striking the lunar surface at typical impact velocities, the final crater diameter is typically $\sim 10-20$ times larger than the projectile diameter. Thus, the LROC temporal imaging data is sensitive to craters corresponding to meteors roughly 0.5 to 1 meters in diameter. Therefore, this technique is insensitive to smaller, micrometeoroid impacts and is additionally limited by the availability and cadence of suitable image pairs
- Flash Detection: Earth-based telescopes monitor the Moon's nearside hemisphere for brief optical flashes produced by hypervelocity meteoroids striking the lunar surface. Observations are constrained to nighttime, favorable weather, and specific lunar phases when illumination is less than 50%, which optimize contrast against the dark background. The observed flash brightness, often modeled as black-body emission, is assumed to represent a fraction (the luminous efficiency) of the impactor's kinetic energy; with an estimate of impact velocity, this enables derivation of the meteoroid's mass and size. Over the past decades, this technique has allowed determination of the flux and size distribution of small near-Earth objects in the centimeter regime (Madiedo et al. 2014: Avdellidou & Vaubaillon 2019). The Lunar Meteoroid Impact Observer (LUMIO) is a CubeSat

- scheduled to launch in 2027 in order to observe the lunar farside for light flashes produced by impacts. By operating at the Earth–Moon L2 point, LUMIO's observations are not limited by weather and it eliminates noise from Earth-shine (Cipriano et al. 2018). LUMIO's primary science goal is to answer "what are the spatial and temporal characteristics of meteoroids impacting the Lunar surface?" and its sensitivity will extend into the micrometeoroid regime (Cervone et al. 2022).
- Topographic Mapping: The Lunar Orbiter Laser Altimeter (LOLA) measures elevation changes on the lunar surface via laser altimetry to detect large-scale impact events. LOLA performs optimally in characterizing the topography at the poles where the LRO orbits converge. While highly accurate for broader terrain mapping, LOLA's spatial resolution limits detection to craters larger than approximately 300–400 meters. Via typical impact scaling relations, these craters suggest minimum impactor sensitivity on the order of 15–40 meters. This makes it currently unsuitable for tracking the small-scale micrometeoroid environment for Artemis-era lunar surface operations (Smith et al. 2010; Kereszturi 2022).

These constraints collectively highlight the need for more sensitive modeling of the lunar surface prior to the establishment of a long-term lunar base and long-term human presence on the Moon.

1.3. NASA's Meteoroid Engineering Model (MEM 3)

NASA's Meteoroid Engineering Model version 3 (MEM 3) is the agency's current physics-based model of the inner-solar-system meteoroid environment (Mc-Namara et al. 2004; Moorhead 2020). Given a user-specified, time-dependent trajectory, MEM 3 returns velocity-resolved, directional fluxes and a bulk-density distribution for meteoroids in the mass range $10^{-6} - 10^{1}$ grams encountered along that path, explicitly accounting for gravitational focusing and planetary shielding near major bodies – Earth, Moon, Mercury, Venus, and Mars (Moorhead 2020). These features are essential when translating interplanetary fluxes to the near-Moon environment, where local gravity from the Earth perturbs meteoroid trajectories and the solid body of the Earth occludes part of the sky.

Compared to prior MEM releases, MEM 3 improves the correlation between impact direction and speed, in-corporates a bulk-density distribution, updates sporadic source populations, and provides both GUI and command-line interfaces for efficient mission analyses

²³⁹ (Moorhead 2020; Moorhead et al. 2020b). Model be-²⁴⁰ havior and predicted impact rates have been compared ²⁴¹ against spacecraft records (e.g., LDEF; Pegasus II/III), ²⁴² demonstrating good agreement – within a factor of 2-3 ²⁴³ of the MEM 3 prediction (Moorhead et al. 2020b).

Although MEM 3 is often used for Earth-orbiting satellites and interplanetary cruise phases, its directional,
velocity-dependent outputs are applicable to a fixed lunar installation by treating the habitat as a "spacecraft"
with a stationary state vector on the Moon's surface.
In that configuration, MEM 3 provides the incident flux
as a function of local time and look direction at the
isite of interest, thereby enabling site-specific penetration and damage-risk assessments. Beyond engineering
usage, MEM-based flux predictions have been leveraged
in planetary science contexts (e.g., interpreting Bennu's
particle-ejection events), demonstrating the model's relsecond flux predictions have been leveraged
(Bottke et al. 2020).

2. METHODS

258

Each run of the MEM 3 code provides outputs for one lunar base. To derive the impact rate across the full surface of the moon, we draw 1,000 points from a Fibonacci sphere to create the initial locations of our lunar base, in selenographic coordinates, described by ϕ measured from the lunar north pole and θ measured from the Moon's prime meridian. Sampling the Fibonacci sphere distributes the bases evenly across the moon's surface, with a ϕ distribution that is approximately normal and 268 a uniform θ distribution.

All trajectories start at J2000, or the J~2451544 Ju-270 lian date, with $\theta = 0$ pointing towards the vernal 271 equinox. We calculate the trajectory of the lunar base ₂₇₂ for the draconic period of the moon T = 27.2122 days, 273 and calculate 30 snapshots of the lunar base over this pe-274 riod for the trajectory file. MEM 3 allows the coordinate 275 system to be centered on the moon, in either ecliptic or 276 equatorial coordinates. We choose to run the simula-277 tions in an ecliptic coordinate frame, which requires a 278 transformation of our selenographic coordinates. Given 279 the initial base location in selenographic coordinates, 280 $L(t_0) = [\phi_0, \theta_0]$, defined by ϕ_0 and θ_0 at time J2000, t_0 , the location at a later time t can be estimated as ²⁸² L(t)=[ϕ_0 , $\theta_0 + \omega(t-t_0)$] for angular velocity $\omega = 2\pi/T$. 283 This location is then converted into Cartesian coordinates, $L(t_0)=[x, y, z]$. The velocity at a given surface 285 location is calculated as the rotational velocity of the 286 base due to the Moon's rotation. The velocity vector is 287 given by

$$\mathbf{v}(t) = \frac{V}{|r_{xy}|} [-y, x, 0],$$
 (4)

where
$$V = \omega r_{\text{moon}} \sin(\phi_0), \tag{5}$$

291 and
$$|r_{\text{xv}}| = \sqrt{x^2 + y^2}$$
. (6)

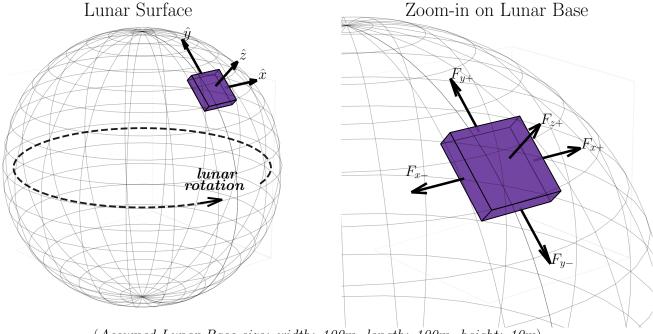
for moon radius $r_{\rm moon}$. With the base location in Cartesian coordinates and the bases' velocity, we then transform these into the ecliptic by rotating the coordinate system by the moon's obliquity relative to the ecliptic plane, a rotation of $\sim 1.54^{\circ}$. This is an approximation that ignores the libration of the moon, which can be up to 7°. This means our base locations can be off by as much as 200 km, which is on the order of the span separation between our simulated base locations.

MEM 3 outputs the flux files with a directional dependent flux. We choose to center our output origin to the moon, and use the body-fixed axes. In the body-fixed system, the \hat{x}_+ direction is always the direction of momon of the spacecraft (in our case, the direction that the moon is rotating, counterclockwise in the ecliptic plane), and \hat{y}_+ is determined by the cross product of \hat{r} , the radial vector relative to the moons center, with \hat{x}_+ . \hat{z}_+ is then the cross product of \hat{x}_+ and \hat{y}_+ , meaning \hat{z}_+ will always point in the radial direction, directly away from the surface of the moon. This can be seen in Figure 2.

MEM 3 simulates two distinct meteoroid populations: a higher-density component and a lower-density component, denoted here by F_{α} and F_{β} , respectively. Within each population, the density is assumed independent of speed, direction, and mass. For a given lunar base, the total flux is computed as the sum of contributions from both populations.

The MEM 3 model outputs fluxes in units of $m^{-2} yr^{-1}$. To facilitate comparison with the total flux incident on a specific structure, we convert these to units of impacts per lunar base per year by scaling with the surface area the base along each plane of impact. Assuming a lunar base roughly the size of the International Space Station, we take its height, length, and width to be

$$h = 10 \text{ m}, \quad l = 100 \text{ m}, \quad w = 100 \text{ m}.$$


327

The total flux from the higher-density population at a specific selenographic initial location defined by ϕ_0 , θ_0 at J2000 is then

$$F_{\alpha}(\phi_{0}, \theta_{0}) = lw \left[F_{\alpha, z_{+}}(\phi_{0}, \theta_{0}) \right] + lh \left[F_{\alpha, x_{+}}(\phi_{0}, \theta_{0}) + F_{\alpha, x_{-}}(\phi_{0}, \theta_{0}) \right] + lh \left[F_{\alpha, y_{+}}(\phi_{0}, \theta_{0}) + F_{\alpha, y_{-}}(\phi_{0}, \theta_{0}) \right], \quad (7)$$

where $F_{\alpha,i_{\pm}}(\phi_0,\theta_0)$ denotes the higher-density flux incident from the $\pm i$ direction, with $i\in x,y,z$, expressed in 336 m⁻², yr⁻¹ and integrated over all velocities.

MEM3 Coordinate System and Lunar Base

(Assumed Lunar Base size: width: 100m, length: 100m, height: 10m)

Figure 2. Schematic showing coordinate system used in the MEM 3 simulations.

379

Analogously, the total flux from the lower-density pop-338 ulation is

$$F_{\beta}(\phi_{0}, \theta_{0}) = lw \left[F_{\beta, z_{+}}(\phi_{0}, \theta_{0}) \right]$$

$$+ lh \left[F_{\beta, x_{+}}(\phi_{0}, \theta_{0}) + F_{\beta, x_{-}}(\phi_{0}, \theta_{0}) \right]$$

$$+ lh \left[F_{\beta, y_{+}}(\phi_{0}, \theta_{0}) + F_{\beta, y_{-}}(\phi_{0}, \theta_{0}) \right].$$
 (8)

Finally, the total meteoroid flux incident on the lunar base, in units of impacts per year per base, is

344

345

346

$$F_{\text{tot}}(\phi_0, \theta_0) = F_{\alpha}(\phi_0, \theta_0) + F_{\beta}(\phi_0, \theta_0).$$
 (9)

3. RESULTS & DISCUSSION

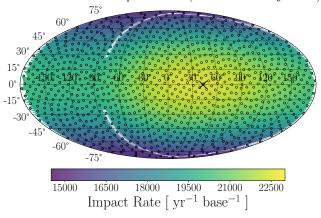
3.1. Unshielded Impact Rate

The MEM 3 model allows the user to specify the minimum meteoroid particle mass, within the range 10^{-6} –
10 g. As an initial case, we simulate an *unshielded im-*pact rate by including the full range of meteoroid masses
in MEM 3. This configuration represents the impact flux
that a lunar base would experience in the absence of
any protective shielding. While this assumption is physically unrealistic—since even minimal structural materials would provide *some* degree of protection—it serves
as a useful baseline from which to quantify the relative
benefits of shielding in subsequent analyses.

As previously described, we simulate 1,000 points evenly distributed across the lunar surface as a Fibonacci sphere. This gives a set of discrete impact rates on the lunar surface. To obtain a continuous representation of meteoroid impact rates across the lunar surface, we interpolate the results of these 1,000 discrete MEM 3 simulations sampled at different selenographic latitudes and longitudes. The interpolation is performed using a radial basis function (RBF) scheme implemented in the SciPy library (Virtanen et al. 2020a). In this approach, each simulated point (ϕ_i, θ_i) , corresponding to latitude and longitude, is associated with a total impact rate F_i derived from MEM 3. The function constructs a two-dimensional interpolant

$$F_{\text{interp}}(\phi, \theta) = \sum_{i=1}^{N} w_i \, \varphi(r_i), \tag{10}$$

where $r_i = \sqrt{(\phi - \phi_i)^2 + (\theta - \theta_i)^2}$ is the great-circle distance (in degrees) between evaluation and sample points, $\varphi(r_i)$ is the chosen radial basis function, and w_i are the weights obtained by solving the linear system reforced by the known values F_i .


We employ the "multiquadric" kernel,

$$\varphi(r) = \sqrt{1 + (\epsilon r)^2},\tag{11}$$

which provides smooth global interpolation suitable for data on a spherical surface. A small smoothing factor (smooth=1) is applied to mitigate overfitting due to local fluctuations in the discrete model output.

This results in the impact rate maps shown in Figure 3 and Figure 4 – for Mollweide and polar projections, respectively. The sub-Earth point ("x") on the 387 lunar surface was computed at the J2000 epoch using Astropy (Astropy Collaboration et al. 2013, 2018, 2022) with the DE432s ephemeris. The barycentric positions of the Earth and Moon were used to form a Moon–Earth vector in the ICRS frame, from which the sub-Earth longitude was obtained via $\theta = \tan^{-1}(y/x)$ and wrapped to -180°, +180°] for Mollweide map projection compatibility. Three key trends emerge from this "unshielded" 395 lunar base impact rate map: (1) impact rates are high, 396 ranging from approximately 15,000 to 23,000 impacts per year depending on base location; (2) the lunar poles 398 experience systematically fewer impacts than the equaorial regions; and (3) Earth's gravitational focusing dominates over its shielding effect, with the maximum 401 impact rate occurring at the sub-Earth longitude (see Moorhead et al. (2020a) for further discussion of plane-403 tary gravitational focusing of meteor streams).

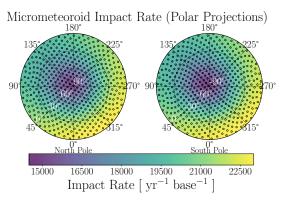


Figure 3. Mollweide projection of "unshielded" impact rate of micrometeoroids on the lunar surface – i.e., complete 10^{-6} –10 g mass range in MEM 3. The "x" on the map represents the sub-Earth point on the lunar surface.

3.2. Shielded Impact Rate

As discussed previously, the performance of a meteoroid shield can be characterized by its *critical mass*, m_c (Equation 3), defined as the maximum projectile mass that the shield can prevent from penetrating. To evaluate this parameter, we adopt a conservative approach to the ballistic limit function, selecting input values that minimize the critical mass and thereby represent a worst-case scenario. This ensures that if a shield de-

Figure 4. Polar projections of "unshielded" impact rate of micrometeoroids on the lunar surface – i.e., complete 10^{-6} – $10~{\rm g}$ mass range in MEM 3.

⁴¹⁴ remains robust under the most adverse, but possible, ⁴¹⁵ conditions.

For simplicity, we assume $F_2^*=1$, which is appropriate for projectiles below the critical diameter of a Whipple shield (see Ryan & Christiansen 2010). We further assume a normal incidence angle ($\theta=0$) to yield the smallest critical diameter. Additional parameters are adopted from Ryan & Christiansen (2010): rear wall thickness $t_w=0.48$ cm, bumper density $\rho_b=2.851$ g cm⁻³, rear wall yield stress $\sigma=52$ ksi, and rear wall spacing S=11.43 cm.

Meteoroids are composed primarily of silicate minerals (Si and O), though metallic constituents such as Fe and Ni are also common (Jessberger et al. 1988; Love Brownlee 1993; Flynn et al. 2016). To maintain a conservative estimate of impact severity, we assume a nickel composition for the projectile, corresponding to a density of $\rho_p = 8.90$ g cm⁻³ (National Institute of Standards and Technology, PML 2025).

We then are left with the velocity of the impactor as the only remaining parameter in our critical mass equation. For the simulation suite with the lowest minimum particle mass ($m_{\rm min}=10^{-6}$ g), we compute the velocity distribution using the MEM 3 model, weighted by directionality according to the assumed base geometry, and then average the resulting flux over each lunar base location. Our averaged velocity distribution is calculated as the flux from both the high and low density contributions, and is shown in Fig. 5.

From this velocity distribution, we compute the normalized cumulative distribution, which allows us to randomly draw 10^7 samples. Plugging in this distribution into Equation 3 we get a distribution of critical masses based on current Whipple shield capabilities, as shown in Figure 6. The median critical mass of this distribution is $m_{\rm crit} = 10^{-1.16} {\rm g}$.

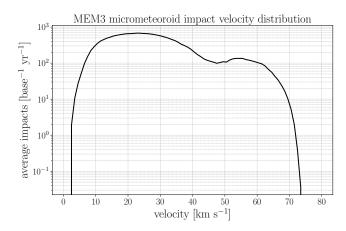
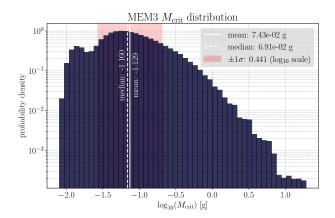



Figure 5. The velocity distribution of impacts for our MEM 3 simulation suite with the minimum mass $m_{\rm min}=10^{-6}{\rm g}$. This is the averaged velocity distribution across all 1,000 base locations and both high and low density simulations.

Figure 6. The critical mass distribution of our particles (Equation 3) using the 10⁷ samples from the normalized cumulative averaged velocity distribution (Figure 5) and assuming current Whipple shielding capabilities.

We can now evaluate the shielded impact rate in two ways: (1) compare a random sample of impacts from our MEM 3 simulation to the critical mass to determine what fraction of impacts are larger than our median critical mass and (2) re-run the MEM 3 simulation with the minimum mass equal to the median critical mass, $m_{\rm min} = m_{\rm crit} = 10^{-1.16}~{\rm g}$.

The ratio of randomly sampled masses from our mass distribution compared to the derived critical is shown in Figure 7. We find that 99.9997% of these particles have masses below the critical mass. Given that this is calculated with the average velocity distribution, a base on the moon located in an area experiencing fewer than the average number of impacts (i.e. near the poles) and accounting for the fact that most impacts will not be face-on $(\theta > 0)$, this implies that current shielding is capable of protecting against nearly every micrometeoroid

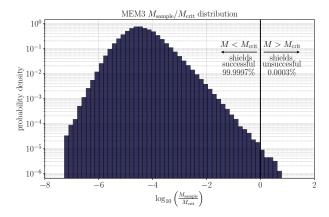
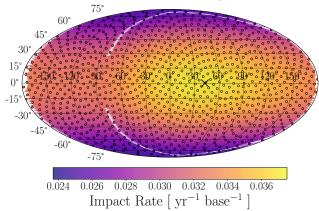
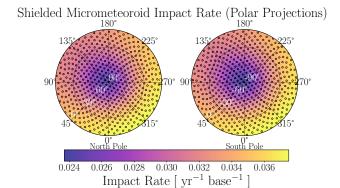


Figure 7. The ratio of randomly sampled masses from our mass distribution compared to the derived critical. We find that the vast majority (> 99.99%) of these impacts are protected by our conservative assumptions for shielding.


 $_{467}$ impact. Placing a base at the lunar south pole, and assuming that shielding will protect against 99.9997% of the 15,000 annual impacts – we can estimate that there will be ~ 0.045 impacts per base per year. This implies that only once every ~ 22 years will an impact break through Whipple shielding.

We also re-run our full MEM 3 model, as previously 474 described, but with a minimum mass set to the me-475 dian critical mass, $m_{\rm min}=m_{\rm crit}=10^{-1.16}~{
m g}$ – yielding 476 the shielded impact rate. We reproduce the impact rate 477 map for this "shielded" simulation, as shown in Figure 3 478 and Figure 9 – for Mollweide and polar projections, re-479 spectively. Using this "shielded" simulation, we again 480 find that the lunar poles are impacted systematically 481 less than the equator and that the gravitational focus-482 ing from Earth dominates over its planetary shielding 483 as the maximum impact rate occurs at the location of 484 the Earth in the lunar sky. With the updated mini-485 mum mass set equal to our estimated critical mass, we 486 find that a lunar base will be impacted $\sim 0.024-0.037$ 487 per year based on its location. At the poles, we esti-488 mate that there will be ~ 0.024 impacts per year large 489 enough to to break through Whipple shielding or once 490 every ~ 42 years.


3.3. Varying Shielding Capabilities

Using the MEM 3 simulation suite, we can estimate the number of meteoroid impacts at the lunar south pole as a function of the critical shielding diameter. This provides a framework for determining the number of *un-shielded* impacts—those that penetrate the protective layers—as a function of the shield's critical performance threshold. As Artemis-era surface habitat designs mature, such calculations can help identify the critical im-

nielded Micrometeoroid Impact Rate (Mollweide Projec

Figure 8. Mollweide projection of "shielded" impact rate of micrometeoroids on the lunar surface – i.e., $10^{-1.16}$ –10~g mass range in MEM 3. The "x" on the map represents the sub-Earth point on the lunar surface.

Figure 9. Polar projections of "shielded" impact rate of micrometeoroids on the lunar surface – i.e., $10^{-1.16}$ –10 g mass range in MEM 3.

⁵⁰⁰ pact mass or size that shielding must withstand to meet ⁵⁰¹ mission safety requirements.

To quantify this, we run two additional MEM 3 models with minimum particle masses set to $m_{\rm min}=10^{-2}~{\rm g}$ and $m_{\rm min}=10^{-4}~{\rm g}$, complementing our earlier simulations at $10^{-6}~{\rm g}$ and $10^{-1.16}~{\rm g}$. In total, these four MEM 3 simulation sets provide impact fluxes $F(>m|\phi_0,\theta_0)$ for different minimum masses m at a given (ϕ_0,θ_0) location on the lunar surface. For each run, we calculate the mean impact rate across all locations within 6° of the lunar south pole, representing the expected flux at a notional base site. The resulting mean southern-pole impact rates $F(>m|\phi_{\rm south},\theta_{\rm south})$ are plotted in Figure 10 as a function of their respective MEM 3 limiting

To provide a smooth, physically motivated comparison, we also compute the expected mass-dependent flux

using the semi-empirical Grün relation (Grün et al. 1985; Moorhead 2020), which underlies MEM 3's baseline interplanetary meteoroid environment model. The Grün relation describes the cumulative flux of meteoroids with mass greater than m (in grams) as

$$F_{\text{Grün}}(>m) = [A(m) + B(m) + C(m)] t_{\text{yr}},$$
 (12)

where $t_{\rm yr}=3.154\times 10^7~{
m s}$ is the number of seconds in one year, and

$$A(m) = (c_4 m^{\gamma_4} + c_5)^{\gamma_5}, \tag{13}$$

$$B(m) = c_6 \left(m + c_7 m^{\gamma_6} + c_8 m^{\gamma_7} \right)^{\gamma_8}, \tag{14}$$

$$C(m) = c_9 \left(m + c_{10} m^{\gamma_9} \right)^{\gamma_{10}}. \tag{15}$$

 $_{528}$ The empirical coefficients and exponents are

525

526

527

553

The Grün relation is evaluated continuously over the range $10^{-6}\,\mathrm{g} < m < 10^{1}\,\mathrm{g}$. Let $F_{\mathrm{Grün}}(>m_0)$ denote the cumulative Grün flux at the anchor point $m_0 = 10^{-6}\,\mathrm{g}$, and $F(>m_0|\phi_{\mathrm{south}},\theta_{\mathrm{south}})$ the corresponding mean southern-pole impact rate from the MEM 3 simulation at that mass threshold. We then define a scaled Grün-based model for the impact rate as

$$\frac{F(>m|\phi_{\text{south}},\theta_{\text{south}})}{F(>m_0|\phi_{\text{south}},\theta_{\text{south}})} = \frac{F_{\text{Grün}}(>m)}{F_{\text{Grün}}(>m_0)}.$$
 (16)

This scaling preserves the functional shape of the Grün mass–flux relation while normalizing it to the absolute impact rate derived from MEM 3 at the south pole – and allows us to predict $F(>m|\phi_{\rm south},\theta_{\rm south})$ for any m. The resulting smoothed relation, shown in Figure 10, provides a continuous estimate of the expected meteson original flux as a function of particle mass, which can be directly applied to evaluate shielding performance for various design thresholds.

4. CONCLUSION

In this study, we used NASA's Meteoroid Engineering Model 3 (MEM 3) to quantify the micrometeoroid impact environment across the lunar surface and evaluate its implications for long-duration Artemis-era surface habitats. By performing 1,000 directional MEM 3 simulations

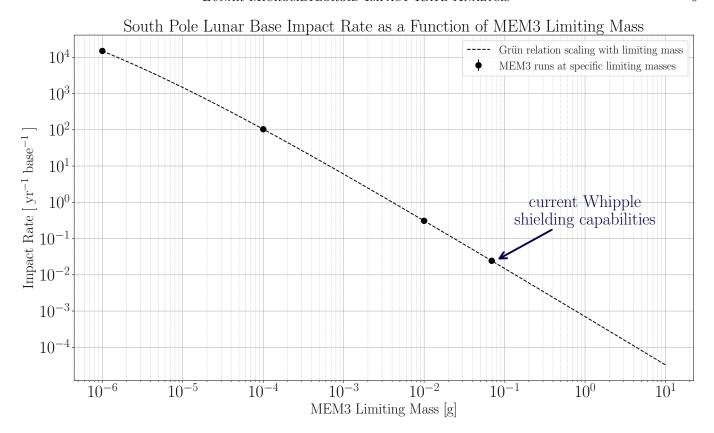


Figure 10. Impact rate on the lunar south pole (mean of simulations within 6° on lunar south pole) as a function of minimum MEM 3 mass. Points represent 4 individual MEM 3 runs with minimum mass set to 10^{-6} , 10^{-4} , 10^{-2} , $10^{-1.16}$ g, respectively. Dashed line shows the Grün relation scaled to the 10^{-6} g minimum mass MEM 3 simulation.

594

595

596

597

598

599

559 uniformly distributed in selenographic coordinates, we 550 derived both "unshielded" and "shielded" impact rates 551 for a notional lunar base with dimensions comparable to 552 the International Space Station.

Our unshielded simulations indicate that a base of this size would experience approximately 15,000 to 23,000 micrometeoroid impacts per year, with the lunar poles receiving roughly 1.6 times fewer impacts than the equatorial regions. This latitudinal dependence is likely driven primarily by the geometric effects of the Moon's orientation relative to the meteoroid sources and the partial gravitational focusing of fluxes by Earth.

Using a Whipple-type shield configuration as a conservative baseline, we derived a critical projectile mass of $m_{\rm crit} \approx 10^{-1.16}$ g. Simulated impactor mass distributions show that approximately 99.9997% of particles fall below this threshold, implying that current MMOD shielding technology can effectively mitigate nearly all micrometeoroid impacts. Accounting for modern Whippleshielding capabilities, we estimate a residual rate of $\sim 0.024-0.037$ penetrating impacts per year, corresponding to a single unprotected impact event every 27–42 years. We again find that in this regime the lu-

nar poles receive approximately 1.6 times fewer impacts than the equatorial regions.

To extend these discrete simulations, we scaled the empirical Grün meteoroid flux relation to the MEM 3-586 derived impact rate at $m=10^{-6}$ g, yielding a smooth function for the expected impact frequency as a function of limiting mass. This approach enables a continuous evaluation of shielding performance across arbitrary design thresholds and provides a practical engineering tool for mission planners.

Overall, our results demonstrate that:

- 1. The lunar south pole offers a natural reduction in impact risk relative to equatorial sites, supporting its selection for sustained human presence.
- 2. Existing Whipple shielding technology is sufficient to suppress micrometeoroid hazards by nearly five orders of magnitude, reducing the effective risk to a negligible level for current habitat designs.

Future work should incorporate additional factors such as regolith-based or hybrid shielding materials, transient meteoroid streams, and local topographic effects on flux anisotropy. These refinements will further

604 improve our understanding of the meteoroid threat en-605 vironment for upcoming Artemis surface missions and 606 long-term lunar infrastructure.

N.A., M.D., and K.O. were supported by the Student 608 Training in Astronomy Research (STAR) program at 609 Columbia University, which is grateful for the support 610 of the Pinkerton Foundation, New York City Science 611 Research Mentoring Consortium, and the National Os-612 terbrock Leadership Program of the AAS. D.A.Y. acknowledges support from NASA Grant 614 #80NSSC21K0960. D.A.Y. acknowledges support from the NASA/NY 616 Space Grant D.A.Y. thanks the LSST-DA Data Science Fellowship 618 Program, which is funded by LSST-DA, the Brinson 619 Foundation, and the Moore Foundation; his participa-620 tion in the program has benefited this work. This work made use of the following software pack-622 ages: astropy (Astropy Collaboration et al. 2013, 2018, 623 2022), matplotlib (Hunter 2007), numpy (Harris et al. 624 2020), python (Van Rossum & Drake 2009), and scipy 625 (Virtanen et al. 2020b; Gommers et al. 2025). Software citation information aggregated using The 627 Software Citation Station (Wagg & Broekgaarden 628 2024; Wagg et al. 2025).

ChatGPT was utilized to improve wording at the sentence level and assist with coding inquires – last accessed in 2025 October.

REFERENCES

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, 633 doi: 10.1051/0004-6361/201322068 634 635 Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f 636 637 Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74 Avdellidou, C., & Vaubaillon, J. 2019, Astronomy & 639 Astrophysics, 626, A90, 640 doi: 10.1051/0004-6361/201935396 641 642 Bottke, W. F., Moorhead, A. V., Connolly, H. C., et al. 2020, Journal of Geophysical Research (Planets), 125, 643 e06282, doi: 10.1029/2019JE006282 644 645 Cervone, A., Topputo, F., Speretta, S., et al. 2022, Acta Astronautica, 195, 309, 646 doi: 10.1016/j.actaastro.2022.03.032 647 648 Christiansen, E. L., Nagya, K., Lear, D. M., & Prior, T. G. 2009, Space station MMOD shielding, Pergamon 649 Cipriano, A. M., Dei Tos, D. A., & Topputo, F. 2018, 650 Frontiers in Astronomy and Space Sciences, 5,

doi: 10.3389/fspas.2018.00029

653 Flynn, G. J., Nittler, L. R., & Engrand, C. 2016, Elements, 12, 177, doi: 10.2113/gselements.12.3.177 655 Gommers, R., Virtanen, P., Haberland, M., et al. 2025, scipy/scipy: SciPy 1.16.2, v1.16.2, Zenodo, 656 doi: 10.5281/zenodo.17101542. 657 https://doi.org/10.5281/zenodo.17101542 658 Grün, E., Zook, H. A., Fechtig, H., & Giese, R. H. 1985, 659 Icarus, 62, 244, doi: 10.1016/0019-1035(85)90121-6660 661 Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2 663 Holsapple, K. A. 1993, Annual Review of Earth and Planetary Sciences, 21, 333, 664 doi: 10.1146/annurev.ea.21.050193.002001 665 666 Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90, doi: 10.1109/MCSE.2007.55 667 668 Jessberger, E. K., Christoforidis, A., & Kissel, J. 1988, Nature, 332, 691, doi: 10.1038/332691a0 669 670 Kereszturi, A. 2022, Icarus, 376, 148-179, 671 doi: 10.1016/j.icarus.2021.114879 672 Love, S. G., & Brownlee, D. E. 1993, Science, 262, 550, doi: 10.1126/science.262.5133.550

```
674 Madiedo, J., Ortiz, J., Organero, F., et al. 2014, Icarus,
```

- 675 233, 27
- 676 McNamara, H., Jones, J., Kauffman, B., et al. 2004, Earth
- Moon and Planets, 95, 123,
- doi: 10.1007/s11038-005-9044-8
- 679 Melosh, H. J. 1989, Impact cratering: A geologic process,
- Vol. 11 (Oxford University Press)
- 681 Moorhead, A. V. 2020, NASA Meteoroid Engineering
- 682 Model (MEM) Version 3, Tech. Rep. NTRS 20200000563,
- NASA Meteoroid Environment Office
- 684 Moorhead, A. V., Clements, T. D., & Vida, D. 2020a,
- 685 MNRAS, 494, 2982, doi: 10.1093/mnras/staa719
- 686 Moorhead, A. V., Kingery, A., & Ehlert, S. 2020b, Journal
- of Spacecraft and Rockets, 57, 160, doi: 10.2514/1.A34561
- 688 National Institute of Standards and Technology, PML.
- 689 2025, Composition of Nickel NIST PML, https:
- //pml.nist.gov/cgi-bin/Star/compos.pl?matno=028.
- 691 https://pml.nist.gov/cgi-bin/Star/compos.pl?matno=028
- 692 Peña-Asensio, E., Suñer, D., Gordo, S., & Cuesta, E. 2024,
- Acta Astronautica, 219, 267,
- doi: 10.1016/j.actaastro.2024.03.048
- 695 Ryan, S., & Christiansen, E. L. 2010, Micrometeoroid and
- orbital debris (MMOD) shield ballistic ... https://www.
- lpi.usra.edu/lpi/contribution_docs/LPI-001804.pdf

- 698 Ryan, S., Christiansen, E. L., Ordonez, E., & Lear, D. M.
- 699 2015, Hypervelocity Impact Performance of Open Cell
- 700 Foam Core Sandwich Panel Structures, Tech. Rep.
- NASA/TM-2015-218593, NASA Johnson Space Center /
- 702 USRA / MEI Technologies
- 703 Smith, D. E., Zuber, M. T., Neumann, G. A., et al. 2010,
- Geophysical Research Letters, 37, L18204,
- 705 doi: 10.1029/2010GL043751
- 706 Speyerer, E., Robinson, M., Boyd, A., Denevi, B., &
- ⁷⁰⁷ Wagner, R. 2016a, Nature, 538, 215
- 708 Speyerer, E. J., Povilaitis, R. Z., Robinson, M. S., Thomas,
- 709 P. C., & Wagner, R. V. 2016b, Nature, 538, 215–218,
- 710 doi: 10.1038/nature19829
- 711 Van Rossum, G., & Drake, F. L. 2009, Python 3 Reference
- Manual (Scotts Valley, CA: CreateSpace)
- 713 Virtanen, P., Gommers, R., Oliphant, T. E., & et al. 2020a,
- 714 Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
- 715 Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020b,
- Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
- 717 Wagg, T., Broekgaarden, F., & Gültekin, K. 2025,
- TomWagg/software-citation-station: v1.3, v1.3, Zenodo,
- doi: 10.5281/zenodo.17145205.
- 720 https://doi.org/10.5281/zenodo.17145205
- ⁷²¹ Wagg, T., & Broekgaarden, F. S. 2024, arXiv e-prints,
- 722 arXiv:2406.04405. https://arxiv.org/abs/2406.04405